Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

Effects of methylation of non-CpG sequence in the promoter region on the expression of human synaptotagmin XI (syt11).

Gene 2005 March 29
We have studied the effects of methylation of the promoter region on the expression of human synaptotagmin XI (syt11), a gene implicated in the onset of schizophrenia. Sequence analysis showed that cytosine residues not in the CpG sequence, but still within the promoter region of the gene, are partially methylated. The methylated cytosine residues are located in the mRNA-coding (minus) strand of the promoter region (mCmCTTmCTTmCmC). Gel mobility shift assays showed that when the cytosine residues are methylated, the binding activity of an Sp family protein, a transcription factor, to the region is significantly reduced. Furthermore, transient transcription assays using artificially methylated promoter sequences showed that methylation did reduce the expression of the reporter gene. The biological significance of the finding is discussed in respect to the effect of methylation of non-CpG sequences in promoter regions on gene expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app