Journal Article
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

A role for the anaphase-promoting complex inhibitor Emi2/XErp1, a homolog of early mitotic inhibitor 1, in cytostatic factor arrest of Xenopus eggs.

Unfertilized vertebrate eggs are arrested in metaphase of meiosis II with high cyclin B/Cdc2 activity to prevent parthenogenesis. Until fertilization, exit from metaphase is blocked by an activity called cytostatic factor (CSF), which stabilizes cyclin B by inhibiting the anaphase-promoting complex (APC) ubiquitin ligase. The APC inhibitor early mitotic inhibitor 1 (Emi1) was recently found to be required for maintenance of CSF arrest. We show here that exogenous Emi1 is unstable in CSF-arrested Xenopus eggs and is destroyed by the SCF(betaTrCP) ubiquitin ligase, suggesting that endogenous Emi1, an apparent 44-kDa protein, requires a stabilizing factor. However, anti-Emi1 antibodies crossreact with native Emi2/Erp1/FBXO43, a homolog of Emi1 and conserved APC inhibitor. Emi2 is stable in CSF-arrested eggs, is sufficient to prevent CSF release, and is rapidly degraded in a Polo-like kinase 1-dependent manner in response to calcium-mediated egg activation. These results identify Emi2 as a candidate CSF maintenance protein.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app