Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Reactive oxygen species reduce myofibrillar Ca2+ sensitivity in fatiguing mouse skeletal muscle at 37 degrees C.

The mechanisms of muscle fatigue were studied in small muscle bundles and single fibres isolated from the flexor digitorum brevis of the mouse. Fatigue caused by repeated isometric tetani was accelerated at body temperature (37 degrees C) when compared to room temperature (22 degrees C). The membrane-permeant reactive oxygen species (ROS) scavenger, Tiron (5 mM), had no effect on the rate of fatigue at 22 degrees C but slowed the rate of fatigue at 37 degrees C to that observed at 22 degrees C. Single fibres were microinjected with indo-1 to measure intracellular calcium. In the accelerated fatigue at 37 degrees C the tetanic [Ca2+](i) did not change significantly and the decline of maximum Ca2+-activated force was similar to that observed at 22 degrees C. The cause of the greater rate of fatigue at 37 degrees C was a large fall in myofibrillar Ca2+ sensitivity. In the presence of Tiron, the large fall in Ca2+ sensitivity was abolished and the usual decline in tetanic [Ca2+](i) was observed. This study confirms the importance of ROS in fatigue at 37 degrees C and shows that the mechanism of action of ROS is a decline in myofibrillar Ca2+ sensitivity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app