Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Chronic ethanol feeding and folate deficiency activate hepatic endoplasmic reticulum stress pathway in micropigs.

Previously, we showed that feeding micropigs ethanol with a folate-deficient diet promoted the development of hepatic injury while increasing hepatic levels of homocysteine and S-adenosylhomocysteine (SAH) and reducing the level of S-adenosylmethionine (SAM) and the SAM-to-SAH ratio. Our present goals were to evaluate mechanisms for hepatic injury using liver specimens from the same micropigs. The effects of ethanol feeding or folate-deficient diets, singly or in combination, on cytochrome P-450 2E1 (CYP2E1) and signal pathways for apoptosis and steatosis were analyzed using microarray, real-time PCR, and immunoblotting techniques. Apoptosis was increased maximally by the combination of ethanol feeding and folate deficiency and was correlated positively to liver homocysteine and SAH. Liver CYP2E1 and the endoplasmic reticulum stress signals glucose-regulated protein 78 (GRP78), caspase 12, and sterol regulatory element binding protein-1c (SREBP-1c) were each activated in pigs fed folate-deficient or ethanol diets singly or in combination. Liver mRNA levels of CYP2E1, GRP78, and SREBP-1c, and protein levels of CYP2E1, GRP78, nuclear SREBP, and activated caspase 12 each correlated positively to liver levels of SAH and/or homocysteine and negatively to the SAM-to-SAH ratio. The transcripts of the lipogenic enzymes fatty acid synthase, acetyl-CoA carboxylase, and stearoyl-CoA desaturase were elevated in the ethanol-fed groups, and each was positively correlated to liver homocysteine levels. The induction of abnormal hepatic methionine metabolism through the combination of ethanol feeding with folate deficiency is associated with the activation of CYP2E1 and enhances endoplasmic reticulum stress signals that promote steatosis and apoptosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app