Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Tissue-specific expression of renin-angiotensin system components in IgA nephropathy.

BACKGROUND: The renin-angiotensin II system (RAS) has been implicated in the development of glomerulonephritis. The aims of this study were to determine (1) the expression of RAS components, angiotensin (Ang II)-forming enzymes [angiotensin-I-converting enzyme (ACE) and chymase], and Ang II receptors, and (2) the correlation between RAS expression and severity of tissue injury in IgA nephropathy (IgAN).

METHODS: The expression levels of ACE, chymase, and Ang II type 1 and type 2 receptor (AT1R and AT2R) mRNAs were determined by in situ hybridization in renal specimens from 18 patients with IgAN, 5 patients with non-IgA mesangial proliferative glomerulonephritis (non-IgAN) and 10 patients with nonmesangial proliferative glomerulonephritis (minimal change nephrotic syndrome, n = 5, and membranous nephropathy, n = 5). Normal portions of surgically resected kidney served as control.

RESULTS: In normal kidney, a few mesangial cells and glomerular and tubular epithelial cells weakly expressed ACE, chymase and AT1R mRNAs. In IgAN and non-IgAN samples, ACE, chymase, AT1R and AT2R mRNAs were expressed in resident glomerular cells, including mesangial cells, glomerular epithelial cells and cells of Bowman's capsule. The glomerular expressions in IgAN were stronger than in minimal change nephrotic syndrome and membranous nephropathy. In IgAN, the expressions in glomeruli correlated with the degree of mesangial hypercellularity, whereas the expression levels were weaker at the area of mesangial expansion. IgAN with severe tubulointerstitial injury showed expression of ACE, chymase, AT1R and AT2R mRNAs in atrophic tubules and infiltrating cells and such expression correlated with the degree of tubulointerstitial damage.

CONCLUSION: Our results suggest that renal cells can produce RAS components and that locally synthesized Ang II may be involved in tissue injury in IgAN through Ang II receptors in the kidney.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app