Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effects of antigen presentation of eosinophils on lung Th1/Th2 imbalance.

BACKGROUND: Antigen-loaded eosinophils (EOSs) instilled intratracheally into mice were capable of inducing Th2-type cytokine production in the draining lymph nodes. The aim of the present study was to evaluate whether EOSs within the tracheobronchial lumen can stimulate Th2 cell expansion in the lung tissues.

METHODS: Airway EOSs were recovered from ovalbumin-sensitized and -challenged BALB/c mice, these EOSs were then cocultured with CD4+ cells isolated from sensitized mice in the absence or presence of anti-CD80 or/and -CD86 monoclonal antibodies. Airway EOSs were instilled into the trachea of sensitized mice. At the day 3 thereafter, the lung tissues were removed and prepared into cell suspensions for culture. Cell-free culture supernatants were collected for detection of cytokines.

RESULTS: Airway EOSs functioned as CD80- and CD86-dependent antigen-presenting cells to stimulate lung CD4+ lymphocytes to produce interleukin-4, interleukin-5 and interleukin-13, but not interferon-gamma in in vitro assay. When instilled intratracheally in sensitized recipient mice, airway EOSs primed lung Th2 cells in vivo for interleukin-4, interleukin-5 and interleukin-13, but not interferon-gamma, production during the in vitro culture that was also CD80- and CD86-dependent.

CONCLUSION: EOSs within the lumina of airways could process inhaled antigen and function in vitro and in vivo as antigen-presenting cells to promote expansion of Th2 cells in the lungs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app