Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The role of NOS2 and NOS3 in renal protein and arginine metabolism during early endotoxemia in mice.

Previously, we observed an enhanced renal protein synthesis and increased de novo arginine production in the early response to endotoxemia in wild-type Swiss mice (Hallemeesch MM, Soeters PB, and Deutz NE. Am J Physiol Renal Physiol 282: F316-F323, 2002). To establish whether these changes are regulated by nitric oxide (NO) synthesized by NO synthase isoforms NOS2 and NOS3, we studied C57BL6/J wild-type (WT), NOS2-deficient (NOS2(-/-)), and NOS3-deficient (NOS3(-/-)) mice under baseline (unstimulated) and LPS-treated conditions. The metabolism of renal protein, amino acid, and arginine was studied at the whole body level and across the kidney by infusing the stable isotopes l-[phenyl-(2)H(5)]phenylalanine, l-[phenyl-(2)H(2)]tyrosine, l-guanidino-[(15)N(2)]arginine, and l-[ureido-(13)C,(2)H(2)]citrulline. Renal blood flow was measured using radioactive PAH extraction. Under baseline conditions, renal blood flow was significantly reduced in NOS2(-/-) mice (0.29 +/- 0.01 vs. 0.48 +/- 0.07 ml.10 g body wt(-1).min(-1) in WT) (P < 0.05), and de novo arginine production was lower in NOS2(-/-) mice. After LPS challenge, renal protein turnover and arginine production increased in all three groups (P < 0.05), even though renal de novo arginine synthesis did not increase. The expected increase in renal citrulline production and disposal after LPS was not observed in NOS2(-/-) mice (P = 0.06). Collectively, these data show that NOS2 is constitutively expressed in the kidney and remarkably functional as it affects renal blood flow and de novo arginine production under baseline conditions and is important for the increase in renal citrulline turnover during endotoxemia. NOS3, in contrast, appears less important for renal metabolism. The increase in renal protein turnover during endotoxemia does not depend on NOS2 or NOS3 activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app