Add like
Add dislike
Add to saved papers

Understanding how an arm swing enhances performance in the vertical jump.

This investigation was conducted to examine the various theories that have been proposed to explain the enhancement of jumping performance when using an arm swing compared to when no arm swing is used. Twenty adult males were asked to perform a series of maximal vertical jumps while using an arm swing and again while holding their arms by their sides. Force, motion and electromyographical data were recorded during each performance. Participants jumped higher (0.086 m) in the arm swing compared to the no-arm swing condition and was due to increased height (28%) and velocity (72%) of the center of mass at take-off. The increased height at take-off was due to the elevation of the arm segments. The increased velocity of take-off stemmed from a complex series of events which allowed the arms to build up energy early in the jump and transfer it to the rest of the body during the later stages of the jump. This energy came from the shoulder and elbow joints as well as from extra work done at the hip. This energy was used to (i) increase the kinetic and potential energy of the arms at take-off, (ii) store and release energy from the muscles and tendons around the ankle, knee and hip joint, and (iii) 'pull' on the body through an upward force acting on the trunk at the shoulder. It was concluded that none of the prevailing theories exclusively explains the enhanced performance in the arm swing jump, but rather the enhanced performance is based on several mechanisms operating together.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app