Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

In vitro transdermal delivery of the major catechins and caffeine from extract of Camellia sinensis.

The aim of this study was to investigate the feasibility of the transdermal delivery of catechins and caffeine from green tea extract. Drug-in-adhesive patches containing 1.35, 1.03, 0.68, and 0.32 mg cm(-2) green tea extract were formulated and the dissolution of (-)-epigallocatechin gallate (EGCg), (-)-epigallocatechin (EGC) and (-)-epicatechin (EC) from these was determined. Transdermal delivery was determined across full thickness pig ear skin from saturated solutions of green tea extract in pH 5.5 citrate-phosphate buffer, polyethylene glycol 400 and a 50:50 mixture of the citrate phosphate buffer and polyethylene glycol in addition to patches containing 1.35 mg cm(-2) green tea extract. Dissolution experiments indicated first order release which was dose dependent in respect of the loading level, although the amounts permeated were not always proportional to the amounts in the formulation. The highest percentage permeation of EGCg was found to be from the patch formulation. EGCg, EGC and EC were all successfully delivered transdermally from saturated solutions and adhesive patches containing green tea extract in this study. There was some evidence for the dermal metabolism of EGCg, but after 24 h 0.1% permeated from the patches containing 1.35 mg cm(-2) green tea extract. This was equivalent to the percentage absorbed after intragastric administration of green tea extract in rats. In addition, the concentration of EGCg in the Franz cell receptor chamber after 24 h permeation from the 0.9 cm diameter patch containing 1.35 mg cm(-2) was within the range of Cmax plasma levels achieved after oral dosing of 2.2-4.2 gm(-2) green tea extract. Caffeine was also delivered at concentrations above those previously reported.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app