Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Fluoxetine attenuates thermal hyperalgesia through 5-HT1/2 receptors in streptozotocin-induced diabetic mice.

Diabetic neuropathic pain, an important microvascular complication in diabetes mellitus, is recognised as one of the most difficult types of pain to treat. A lack of understanding of its aetiology, inadequate relief, development of tolerance and potential toxicity of classical antinociceptives warrant the investigation of newer agents to relieve this pain. The aim of the present study was to explore the antinociceptive effect and possible mechanism of action of a serotonin reuptake inhibitor, fluoxetine, in streptozotocin-induced diabetic mice. Four weeks after a single intraperitoneal injection of streptozotocin (200 mg/kg), mice were tested in the tail-immersion and hot-plate assays. Diabetic mice exhibited significant hyperalgesia compared with control mice. Fluoxetine (10 and 20, but not 5 mg/kg, i.p.) injected into diabetic mice produced an antinociceptive effect in both the tail-immersion and hot-plate assays. The percentage maximum possible effect (% MPE) produced by fluoxetine (20 mg/kg, i.p.) was significantly lower in diabetic mice than in control mice. The antinociceptive effect of fluoxetine (20 mg/kg) in diabetic mice was dose-dependently potentiated by pindolol (5 and 10 mg/kg, i.p., a selective 5-HT(1A/1B) receptor antagonist), attenuated by ritanserin (1 and 2 mg/kg, i.p., a selective 5-HT(2A/2C) receptor antagonist) and remained unaffected by ondansetron (1 and 2 mg/kg, i.p., a selective 5-HT(3) receptor antagonist) in both test systems. These results suggest that fluoxetine-induced antinociception primarily involves serotonin pathway modulation through 5-HT(1) and 5-HT(2) receptors, but not through 5-HT(3) receptors, in the chronic pain associated with streptozotocin-induced diabetic neuropathy. Further, the potentiation of the antinociceptive effect of fluoxetine by pindolol indicates the usefulness of a combination of an antidepressant and a 5-HT(1A/1B) receptor antagonist in the treatment of diabetic neuropathic pain in humans.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app