Fluoxetine attenuates thermal hyperalgesia through 5-HT1/2 receptors in streptozotocin-induced diabetic mice

Muragundla Anjaneyulu, Kanwaljit Chopra
European Journal of Pharmacology 2004 August 30, 497 (3): 285-92
Diabetic neuropathic pain, an important microvascular complication in diabetes mellitus, is recognised as one of the most difficult types of pain to treat. A lack of understanding of its aetiology, inadequate relief, development of tolerance and potential toxicity of classical antinociceptives warrant the investigation of newer agents to relieve this pain. The aim of the present study was to explore the antinociceptive effect and possible mechanism of action of a serotonin reuptake inhibitor, fluoxetine, in streptozotocin-induced diabetic mice. Four weeks after a single intraperitoneal injection of streptozotocin (200 mg/kg), mice were tested in the tail-immersion and hot-plate assays. Diabetic mice exhibited significant hyperalgesia compared with control mice. Fluoxetine (10 and 20, but not 5 mg/kg, i.p.) injected into diabetic mice produced an antinociceptive effect in both the tail-immersion and hot-plate assays. The percentage maximum possible effect (% MPE) produced by fluoxetine (20 mg/kg, i.p.) was significantly lower in diabetic mice than in control mice. The antinociceptive effect of fluoxetine (20 mg/kg) in diabetic mice was dose-dependently potentiated by pindolol (5 and 10 mg/kg, i.p., a selective 5-HT(1A/1B) receptor antagonist), attenuated by ritanserin (1 and 2 mg/kg, i.p., a selective 5-HT(2A/2C) receptor antagonist) and remained unaffected by ondansetron (1 and 2 mg/kg, i.p., a selective 5-HT(3) receptor antagonist) in both test systems. These results suggest that fluoxetine-induced antinociception primarily involves serotonin pathway modulation through 5-HT(1) and 5-HT(2) receptors, but not through 5-HT(3) receptors, in the chronic pain associated with streptozotocin-induced diabetic neuropathy. Further, the potentiation of the antinociceptive effect of fluoxetine by pindolol indicates the usefulness of a combination of an antidepressant and a 5-HT(1A/1B) receptor antagonist in the treatment of diabetic neuropathic pain in humans.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"