A single amino acid substitution in the envelope protein of chimeric yellow fever-dengue 1 vaccine virus reduces neurovirulence for suckling mice and viremia/viscerotropism for monkeys

F Guirakhoo, Z Zhang, G Myers, B W Johnson, K Pugachev, R Nichols, N Brown, I Levenbook, K Draper, S Cyrek, J Lang, C Fournier, B Barrere, S Delagrave, T P Monath
Journal of Virology 2004, 78 (18): 9998-10008
A chimeric yellow fever-dengue 1 (ChimeriVax-DEN1) virus was produced by the transfection of Vero cells with chimeric in vitro RNA transcripts. The cell culture supernatant was subjected to plaque purification for the identification of a vaccine candidate without mutations. Of 10 plaque-purified clones, 1 containing no mutation (clone J) was selected for production of the vaccine virus. During subsequent cell culture passaging of this clone for vaccine production, a single amino acid substitution (K to R) occurred in the envelope (E) protein at residue 204 (E204) (F. Guirakhoo, K. Pugachev, Z. Zhang, G. Myers, I. Levenbook, K. Draper, J. Lang, S. Ocran, F. Mitchell, M. Parsons, N. Brown, S. Brandler, C. Fournier, B. Barrere, F. Rizvi, A. Travassos, R. Nichols, D. Trent, and T. Monath, J. Virol. 78:4761-4775, 2004). The same mutation was observed in another clone (clone E). This mutation attenuated the virus in 4-day-old suckling mice inoculated by the intracerebral (i.c.) route and led to reduced viremia in monkeys inoculated by the subcutaneous or i.c. route. The histopathology scores of lesions in the brain tissue of monkeys inoculated with either the E204K or E204R virus were reduced compared to those for monkeys inoculated with the reference virus, a commercial yellow fever 17D vaccine (YF-VAX). Both viruses grew to significantly lower titers than YF-VAX in HepG2, a human hepatoma cell line. After intrathoracic inoculation into mosquitoes, both viruses grew to a similar level as YF-VAX, which was significantly lower than that of their wild-type DEN1 parent virus. A comparison of the E-protein structures of nonmutant and mutant viruses suggested the appearance of new intramolecular bonds between residues 204R, 261H, and 257E in the mutant virus. These changes may be responsible for virus attenuation through a change in the pH threshold for virus envelope fusion with the host cell membrane.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"