Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Immunoregulatory role of nitric oxide in Kilham rat virus-induced autoimmune diabetes in DR-BB rats.

Macrophages play a critical role in the pathogenesis of Kilham rat virus (KRV)-induced autoimmune diabetes in diabetes-resistant BioBreeding (DR-BB) rats. This investigation was initiated to determine the role of macrophage-derived soluble mediators, particularly NO, in the pathogenesis of KRV-induced diabetes in DR-BB rats. We found that the expression of inducible NO synthase (iNOS), an enzyme responsible for NO production, was significantly increased during the early phase of KRV infection. Inhibition of iNOS by aminoguanidine (AG) treatment resulted in the prevention of diabetes in KRV-infected animals. The expression of IL-1beta, TNF-alpha, and IL-12 was significantly decreased in the spleen of AG-treated, KRV-infected DR-BB rats compared with PBS-treated, KRV-infected control rats. Subsequent experiments revealed that AG treatment exerted its preventive effect in KRV-infected rats by maintaining the finely tuned immune balance normally disrupted by KRV, evidenced by a significant decrease in the expression of IFN-gamma, but not IL-4, and a decrease in Th1-type chemokine receptors CCR5, CXCR3, and CXCR4. We also found that iNOS inhibition by AG decreased the KRV-induced expression of MHC class II molecules and IL-2R alpha-chain, resulting in the suppression of T cell activation, evidenced by the decreased cytolytic activity of CD8(+) T cells. We conclude that NO plays a critical immunoregulatory role by up-regulating macrophage-derived proinflammatory cytokines, up-regulating the Th1 immune response, and activating T cells, leading to type 1 diabetes after KRV infection, whereas suppression of NO production by AG treatment prevents KRV-induced autoimmune diabetes in DR-BB rats.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app