Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

A novel role for the adaptor molecule CD2-associated protein in transforming growth factor-beta-induced apoptosis.

CD2-associated protein (CD2AP) is an adaptor molecule involved in T cell receptor signaling and podocyte homeostasis. CD2AP-deficient mice develop nephrotic syndrome and renal failure caused by glomerulosclerosis. Here we report that increased transforming growth factor-beta1 (TGF-beta1) expression and apoptosis were present in podocytes at the onset of albuminuria and were followed by depletion of podocytes associated with progressive focal-segmental glomerulosclerosis in CD2AP-/- mice. Conditionally immortalized podocytes derived from CD2AP-/- mice were more susceptible to TGF-beta-induced apoptosis compared with CD2AP+/+ podocytes. Reconstitution of CD2AP rescued CD2AP-/- podocytes from TGF-beta-induced apoptosis. CD2AP was required for early activation of anti-apoptotic phosphatidylinositol 3-kinase (PI3K)/AKT and extracellular signal-regulated kinase 1/2 by TGF-beta. In contrast, activation of pro-apoptotic p38 MAPK by TGF-beta was accelerated and enhanced in the absence of CD2AP. CD2AP was not required for PI3K/AKT activation by insulin and epidermal growth factor, indicating that CD2AP is a selective mediator of anti-apoptotic TGF-beta signaling. In summary, we identified CD2AP as a novel mediator for selective activation of survival pathways and repression of apoptosis signaling by TGF-beta in podocytes. Together, our in vitro and in vivo findings suggest that TGF-beta-induced podocyte apoptosis is an early pathomechanism in mice developing focal-segmental glomerulosclerosis associated with functional impairment of CD2AP.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app