Journal Article
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Ultraviolet light activates NFkappaB through translational inhibition of IkappaBalpha synthesis.

UV light induces a delayed and prolonged (3-20 h) activation of NFkappaB when compared with the immediate and acute (10-90 min) activation of NFkappaB in response to tumor necrosis factor alpha treatment. In the early phase (3-12 h) of NFkappaB activation, UV light reduces inhibitor of NFkappaB (IkappaB) through an IkappaB kinase-independent, but polyubiquitin-dependent, pathway. However, the mechanism for the UV light-induced reduction of IkappaB and activation of NFkappaB is not known. In this report, we show that UV light down-regulates the total amount of IkappaB through decreasing IkappaB mRNA translation. Our data show that UV light inhibits translation of IkappaB in wild-type mouse embryo fibroblasts (MEF(S/S)) and that this inhibition is prevented in MEF(A/A) cells in which the phosphorylation site, Ser-51 in the eukaryotic translation initiation factor 2 alpha-subunit, is replaced with a non-phosphorylatable Ala (S51A). Our data also show that UV light-induced NFkappaB activation is delayed in MEF(A/A) cells and in an MCF-7 cell line that is stably transfected with a trans-dominant negative mutant protein kinase-like endoplasmic reticulum kinase (PERK). These results suggest that UV light-induced eukaryotic translation initiation factor 2 alpha-subunit phosphorylation translationally inhibits new IkappaB synthesis. Without a continuous supply of newly synthesized IkappaB, the existing IkappaB is degraded through a polyubiquitin-dependent proteasomal pathway leading to NFkappaB activation. Based upon our results, we propose a novel mechanism by which UV light regulates early phase NFkappaB activation by means of an ER-stress-induced translational inhibition pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app