Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Race-specific differences in endothelial function: predisposition of African Americans to vascular diseases.

Circulation 2004 June 2
BACKGROUND: The prevalence of the endothelium-impaired function disorders, such as hypertension and diabetes mellitus, and the severity of their complications are considerably greater in blacks than whites. Evidence has accumulated that superoxide (O2-) production and its interaction with nitric oxide (NO), yielding the strong oxidant peroxynitrite (ONOO-), play central roles in vascular pathophysiology. We hypothesized that the differences in endothelial NO/O2-/ONOO- metabolism may highlight the potential predisposition to endothelial dysfunction and cardiovascular complications prevalent in blacks.

METHODS AND RESULTS: Highly sensitive tandem electrochemical NO/O2-/ONOO- nanosensors were positioned in single human umbilical vein endothelial cells (HUVECs) isolated from blacks and whites, and the kinetics of NO/O2-/ONOO- release were recorded in vitro. HUVECs were also analyzed by Western immunoblotting and enzyme activity assays for NAD(P)H-oxidase and endothelial NO synthase (eNOS). Compared with whites, HUVECs from blacks elicited reduced release of bioactive NO with an accompanying increase in the release of both O2- and ONOO-. The greater potency of NO production because of eNOS upregulation in HUVECs from blacks is associated with a decrease in the NO bioavailability. This is due to increased NO degradation by excess O2- produced primarily by 2 enzymatic sources: NAD(P)H-oxidase and uncoupled eNOS.

CONCLUSIONS: Compared with whites, the steady-state NO/O2-/ONOO- balance in endothelial cells from blacks is kept closer to the redox states characteristic for the endothelium-impaired function disorders. This may explain the differences in racial predisposition to the endothelium dysfunction during ongoing vascular disturbances with the hallmark of enhanced NO inactivation within the endothelium by oxidative stress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app