Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Selection and dispersal in a multispecies oak hybrid zone.

The four western North American red oak species (Quercus wislizeni, Q. parvula, Q. agrifolia, and Q. kelloggii) are known to produce hybrid products in all interspecific combinations. However, it is unknown whether hybrids are transitory resulting from interspecific gene flow or whether they are maintained through extrinsic selection. Here, we examine cryptic hybrid structure in Q. wislizeni through a broad region including contact and isolation from three other western North American red oaks using amplified fragment length polymorphism molecular markers. All four species were simultaneously detected in the genetic background of individuals morphologically assigned to Q. wislizeni, although the contribution of Q. kelloggii was minor. In some cases, introgression was detected well outside the region of sympatry with one of the parental species. Molecular structure at the individual level indicated this was due to long-distance pollen dispersal and not to local extinction of parental species. Species admixture proportions were correlated with climatic variables and greater proportions of Q. agrifolia and Q. parvula were present in the genetic background of Q. wislizeni in sites with cooler and more humid summers, corresponding with habitat preferences of the parental species. Partial Mantel tests indicated that climate was more important than distance from pollen source in this association. Despite high levels of introgression, species integrity was maintained in some populations in close proximity to the other species, providing further support to environmental selection in determining population genetic structure. Thus, the contribution of species mixtures to population genetic structure varies across the landscape according to availability of pollen, but more importantly to varying environmental selection pressures that produce a complex pattern of hybrid and pure gene pools.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app