Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Quercetin, an anti-oxidant bioflavonoid, attenuates diabetic nephropathy in rats.

1. Diabetic nephropathy is an important microvascular complication and one of the main causes of end-stage renal disease. Many in vivo and in vitro studies have indicated that oxidative stress is one of the major pathophysiological mechanisms involved in the development of diabetic nephropathy. In the present study, we examined the effect of an anti-oxidant bioflavonoid quercetin on renal function and oxidative stress in streptozotocin (STZ)-induced diabetic rats. 2. Diabetes was induced in Sprague-Dawley rats with a single intravenous injection of STZ (45 mg/kg). Four weeks after STZ injection, quercetin (10 mg/kg per day) was given orally for 4 weeks in both control and diabetic rats. Plasma glucose levels and bodyweights were measured at 4 and 8 weeks after the STZ injection. At the termination of the experiments, urine albumin excretion, urine output, serum creatinine, blood urea nitrogen, creatinine and urea clearance were measured. The renal oxidative stress marker malonaldehyde, glutathione levels and the anti-oxidant enzymes superoxide dismutase and catalase were measured in kidney homogenate. 3. Streptozotocin-injected rats showed significant increases in blood glucose, polyuria, proteinuria and a decrease in bodyweight compared with age-matched control rats. After 8 weeks, diabetic rats exhibited renal dysfunction, as evidenced by reduced creatinine and urea clearance, and proteinuria along with a marked increase in oxidative stress, as determined by lipid peroxidation and activities of key anti-oxidant enzymes. Treatment with quercetin significantly attenuated renal dysfunction and oxidative stress in diabetic rats. 4. These results confirm the role of oxidative stress in the development of diabetic nephropathy and point to the possible anti-oxidative mechanism being responsible for the nephroprotective action of quercetin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app