Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

SPARC regulates TGF-beta1-dependent signaling in primary glomerular mesangial cells.

Secreted protein acidic and rich in cysteine (SPARC), a member of the family of matricellular proteins, regulates the interaction of cells with pleiotropic factors and proteins of the extracellular matrix (ECM). Although it has been appreciated that transforming growth factor beta 1 (TGF-beta1) induces SPARC and collagen type I, we have recently shown that SPARC regulates the expression of TGF-beta1 and collagen type I in renal mesangial cells via a TGF-beta1-dependent pathway, and have proposed a reciprocal, autocrine regulatory feedback loop between SPARC and TGF-beta1. Herein, we sought to determine how SPARC regulates TGF-beta1-dependent signal transduction. Our data indicate that SPARC modulates the TGF-beta1-dependent phosphorylation of Smad-2 in primary mesangial cells derived from wild-type and SPARC-null mice. We also show that SPARC regulates the levels and activation of the stress-activated c-jun-N-terminal kinase (JNK) in mesangial cells by augmentation of the stimulatory effects of TGF-beta1. Furthermore, we found that SPARC increases the levels and the activity of the transcription factor c-jun. These effects of SPARC on the TGF-beta1 signaling pathway appear to be mediated through an interaction with the TGF-beta1-receptor complex, but only in the presence of TGF-beta1 bound to its cognate type II receptor. That SPARC is directly involved in the regulation of the TGF-beta1 signaling cascade is consistent with the paradigm that matricellular proteins modulate interactions among cells, growth factors, and their respective receptors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app