Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Treatment of epigallocatechin-3-gallate inhibits matrix metalloproteinases-2 and -9 via inhibition of activation of mitogen-activated protein kinases, c-jun and NF-kappaB in human prostate carcinoma DU-145 cells.

Prostate 2004 April 2
BACKGROUND: Matrix metalloproteinases (MMPs) are involved in tumor progression including the carcinoma of the prostate (CaP). Therefore, the effect of (-)-epigallocatechin-3-gallate (EGCG) was determined on the synthesis and activation of tumor invasion-specific MMP-2 and MMP-9 in human prostate carcinoma DU-145 cells.

METHODS: MMP-2 and MMP-9 were determined by zymography and Western blot analysis. Since fibroblast conditioned medium (FCM) partially mimics in vivo tumor-host microenvironment, DU145 cells were co-cultured in FCM.

RESULTS: Treatment of EGCG to DU-145 cells resulted in dose-dependent inhibition of FCM-induced pro and active both forms of MMP-2 and MMP-9 concomitant with marked inhibition of phosphorylation of ERK1/2 and p38. In identical conditions, treatment of EGCG or inhibitors of MEK or p38 to DU-145 cells inhibited FCM-induced phosphorylation of ERK1/2 and/or p38 concomitant reduction in MMP-2 and -9. EGCG also inhibited androgen-induced pro-MMP-2 expression in LNCaP cells. Further, treatment of EGCG also resulted in inhibition of activation of c-jun and NF-kappaB in in vitro DU-145 cells.

CONCLUSIONS: The inhibition of MMP-2 and MMP-9 in DU145 cells by EGCG is mediated via inhibition of phosphorylation of ERK1/2 and p38 pathways, and inhibition of activation of transcription factors c-jun and NF-kappaB. EGCG may play a role in prevention of invasive metastatic processes of both androgen-dependent and -independent prostate carcinoma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app