Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effects of cetylpyridinium chloride, acidified sodium chlorite, and potassium sorbate on populations of Escherichia coli O157:H7, Listeria monocytogenes, and Staphylococcus aureus on fresh beef.

The effects of selected food-grade antimicrobial agents at decreasing the number of pathogenic bacteria on fresh beef were determined. Beef cubes inoculated with Escherichia coli O157:H7, Listeria monocytogenes, or Staphylococcus aureus were sprayed with 0.5% cetylpyridinium chloride (CPC), 0.12% acidified sodium chlorite (ASC), 0.1% potassium sorbate (PS), or an equal mix of any two solutions. The beef samples were placed on absorbent tray pads sprayed with each single or mixed solution, wrapped with polyvinyl chloride film, heat sealed, and stored at 4 degrees C for 2 weeks. Surface sanitization using CPC, ASC, or an equal mix of these two agents effectively reduced microbial numbers on the beef during storage. At day 0, ASC and the CPC-ASC mix reduced the number of E. coli O157:H7 by 2.50 and 1.58 log CFU/cm2, respectively. CPC demonstrated a 3.25-log reduction of L. monocytogenes and a 4.70-log reduction of S. aureus at 14 days. The CPC-PS mix reduced E. coli O157:H7 numbers by 1.46, L. monocytogenes by 2.95, and S. aureus by 4.41 log CFU/cm2 at 14 days. PS alone and the mixed solutions, CPC-ASC, CPC-PS, or ASC-PS, were not as effective as ASC or CPC alone. To effectively reduce E. coli O157:H7, L. monocytogenes, or S. aureus numbers, higher (> 0.1%) concentrations of PS were necessary. Loss of redness and light color of beef surfaces consistently coincided with decreases in pH for ASC-treated beef samples.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app