Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Saturated fatty acid activates but polyunsaturated fatty acid inhibits Toll-like receptor 2 dimerized with Toll-like receptor 6 or 1.

Toll-like receptor 4 (TLR4) and TLR2 agonists from bacterial origin require acylated saturated fatty acids in their molecules. Previously, we reported that TLR4 activation is reciprocally modulated by saturated and polyunsaturated fatty acids in macrophages. However, it is not known whether fatty acids can modulate the activation of TLR2 or other TLRs for which respective ligands do not require acylated fatty acids. A saturated fatty acid, lauric acid, induced NFkappaB activation when TLR2 was co-transfected with TLR1 or TLR6 in 293T cells, but not when TLR1, 2, 3, 5, 6, or 9 was transfected individually. An n-3 polyunsaturated fatty acid (docosahexaenoic acid (DHA)) suppressed NFkappaB activation and cyclooxygenase-2 expression induced by the agonist for TLR2, 3, 4, 5, or 9 in a macrophage cell line (RAW264.7). Because dimerization is considered one of the potential mechanisms for the activation of TLR2 and TLR4, we determined whether the fatty acids modulate the dimerization. However, neither lauric acid nor DHA affected the heterodimerization of TLR2 with TLR6 as well as the homodimerization of TLR4 as determined by co-immunoprecipitation assays in 293T cells in which these TLRs were transiently overexpressed. Together, these results demonstrate that lauric acid activates TLR2 dimers as well as TLR4 for which respective bacterial agonists require acylated fatty acids, whereas DHA inhibits the activation of all TLRs tested. Thus, responsiveness of different cell types and tissues to saturated fatty acids would depend on the expression of TLR4 or TLR2 with either TLR1 or TLR6. These results also suggest that inflammatory responses induced by the activation of TLRs can be differentially modulated by types of dietary fatty acids.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app