Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Discrimination of Klebsiella pneumoniae and Klebsiella oxytoca phylogenetic groups and other Klebsiella species by use of amplified fragment length polymorphism.

Bacteria of the genus Klebsiella are opportunistic pathogens responsible for an increasing number of multiresistant infections in hospitals. The two clinically and epidemiologically most important species, Klebsiella pneumoniae and K. oxytoca, have recently been shown to be subdivided into three and two phylogenetic groups, respectively. The aim of this study was an in depth evaluation of the amplified fragment length polymorphism (AFLP) genetic characterization method for epidemiological and phylogenic analyzes of Klebsiella isolates. First, we investigated the variability of AFLP patterns for Klebsiella strains within and between different outbreaks. Second, by use of carefully characterized phylogenetically representative strains, we examined whether different Klebsiella species and phylogenetic groups can be discriminated using AFLP. Twenty-four strains originating from seven presumed outbreaks and 31 non-associated strains were investigated. The AFLP fingerprints of all epidemiologically associated strains showed three or fewer fragment differences, whereas unrelated strains differed by at least four fragments. Cluster analysis of the AFLP data revealed a very high concordance with the phylogenetic assignation of strains based on the gyrA sequence and ribotyping data. The species K. pneumoniae, K. oxytoca, K. terrigena and the possibly synonymous pair K. planticola/K. ornithinolytica each formed a separate cluster. Similarly, strains of the phylogenetic groups of K. pneumoniae and K. oxytoca fell into their corresponding clusters, with only two exceptions. This study provides a preliminary cut-off value for distinguishing epidemiologically non-related Klebsiella isolates based on AFLP data; it confirms the sharp delineation of the recently identified phylogenetic groups, and demonstrates that AFLP is suitable for identification of Klebsiella species and phylogenetic groups.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app