Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Soluble Jagged-1 is able to inhibit the function of its multivalent form to induce hematopoietic stem cell self-renewal in a surrogate in vitro assay.

Stem cells reside in customized microenvironments (niches) that contribute to their unique ability to divide asymmetrically to give rise to self and to a daughter cell with distinct properties. Notch receptors and their ligands are highly conserved and have been shown to regulate cell-fate decisions in multiple developmental systems through local cell interactions. To assess whether Notch signaling may regulate hematopoiesis to maintain cells in an immature state, we examined the functional role of the recombinant, secreted form of the Notch ligand Jagged-1 during mouse hematopoietic stem cell (HSC) and progenitor cell proliferation and maturation. We found that ligand immobilization on stromal layer or on Sepharose-4B beads is required for the induction of self-renewing divisions of days 28-35 cobblestone area-forming cell. The free, soluble Jagged-1, however, has a dominant-negative effect on self-renewal in the stem-cell compartment. In contrast, free as well as immobilized Jagged-1 promotes growth factor-induced colony formation of committed hematopoietic progenitor cells. Therefore, we propose that differences in Jagged-1 presentation and developmental stage of the Notch receptor-bearing cells influence Notch ligand-binding results toward activation or inhibition of downstream signaling. Moreover, these results suggest potential clinical use of recombinant Notch ligands for expanding human HSC populations in vitro.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app