Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effective anti-platelet and COX-1 enzyme inhibitors from pungent constituents of ginger.

BACKGROUND: Based on recent studies, pungent constituents of ginger (Zingiber officinale) and related substances represent a potential new class of anti-platelet agents. The ability of 20 pungent constituents of ginger and related substances to inhibit arachidonic acid (AA) induced platelet activation in human whole blood was studied.

METHODS: Anti-platelet activity of the compounds was measured in vitro by the Chrono Log whole blood platelet aggregometer. Molecular hydrophobicity (log P) was measured by reversed-phase high-performance liquid chromatography. COX-1 (ovine) inhibitory effect of [8]-paradol and analogues 1 and 5 was carried out using a COX-1 inhibitor assay kit.

RESULTS: [8]-Gingerol, [8]-shogaol, [8]-paradol and gingerol analogues (1 and 5) exhibited anti-platelet activities with IC(50) values ranging from 3 to 7 microM, whilst under similar conditions the IC(50) value for aspirin was 20+/-11 microM. The COX-1 inhibitory activity of [8]-paradol (IC(50)=4+/-1 microM) was more potent than the gingerol analogues (1 and 5) (IC(50) approximately 20 microM).

CONCLUSION: The above findings show that gingerol compounds and their derivatives are more potent anti-platelet agents than aspirin under the conditions described in this study. [8]-Paradol, a natural constituent of ginger, was found to be the most potent COX-1 inhibitor and anti platelet aggregation agent. The mechanism underlying AA-induced platelet aggregation inhibition may be related to attenuation of COX-1/Tx synthase enzymatic activity. Lastly, important features of phenolic compounds for inhibition of AA-induced platelet aggregation and COX-1 activity were revealed in this study.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app