Add like
Add dislike
Add to saved papers

Temperature dependent fluorescence in disordered Frenkel chains: interplay of equilibration and local band-edge level structure.

Physical Review Letters 2003 November 22
We model the optical dynamics in linear Frenkel exciton systems governed by scattering on static disorder and lattice vibrations and calculate the temperature dependent fluorescence spectrum and lifetime. The fluorescence Stokes shift shows a nonmonotonic behavior with temperature, which derives from the interplay of the local band-edge level structure and thermal equilibration. The model yields excellent fits to experiments performed on linear dye aggregates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app