Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

Polariton lasing vs. photon lasing in a semiconductor microcavity.

Nearly one decade after the first observation of Bose-Einstein condensation in atom vapors and realization of matter-wave (atom) lasers, similar concepts have been demonstrated recently for polaritons: half-matter, half-light quasiparticles in semiconductor microcavities. The half-light nature of polaritons makes polariton lasers promising as a new source of coherent and nonclassical light with extremely low threshold energy. The half-matter nature makes polariton lasers a unique test bed for many-body theories and cavity quantum electrodynamics. In this article, we present a series of experimental studies of a polariton laser, exploring its properties as a relatively dense degenerate Bose gas and comparing it to a photon laser achieved in the same structure. The polaritons have an effective mass that is twice the cavity photon effective mass, yet seven orders of magnitude less than the hydrogen atom mass; hence, they can potentially condense at temperatures seven orders of magnitude higher than those required for atom Bose-Einstein condensations. Accompanying the phase transition, a polariton laser emits coherent light but at a threshold carrier density two orders of magnitude lower than that needed for a normal photon laser in a same structure. It also is shown that, beyond threshold, the polariton population splits to a thermal equilibrium Bose-Einstein distribution at in-plane wave number k parallel > 0 and a nonequilibrium condensate at k parallel approximately 0, with a chemical potential approaching to zero. The spatial distributions and polarization characteristics of polaritons also are discussed as unique signatures of a polariton laser.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app