Journal Article
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Neuropathology of mice carrying mutant APP(swe) and/or PS1(M146L) transgenes: alterations in the p75(NTR) cholinergic basal forebrain septohippocampal pathway.

Cholinergic basal forebrain (CBF) projection systems are defective in late Alzheimer's disease (AD). We examined the brains of 12-month-old singly and doubly transgenic mice overexpressing mutant amyloid precursor protein (APP(swe)) and/or presenilin-1 (PS1(M146L)) to investigate the effects of these AD-related genes on plaque and tangle pathology, astrocytic expression, and the CBF projection system. Two types of beta-amyloid (Abeta)-immunoreactive (ir) plaques were observed: type 1 were darkly stained oval and elongated deposits of Abeta, and type 2 were diffuse plaques containing amyloid fibrils. APP(swe) and PS1(M146L) mouse brains contained some type 1 plaques, while the doubly transgenic (APP(swe)/PS1(M146L)) mice displayed a greater abundance of types 1 and 2 plaques. Sections immunostained for the p75 NGF receptor (p75(NTR)) revealed circular patches scattered throughout the cortex and hippocampus of the APP(swe)/PS1(M146L) mice that contained Abeta, were innervated by p75(NTR)-ir neurites, but displayed virtually no immunopositive neurons. Tau pathology was not seen in any transgenic genotype, although a massive glial response occurred in the APP(swe)/PS1(M146L) mice associated with amyloid plaques. Stereology revealed a significant increase in p75(NTR)-ir medial septal neurons in the APP(swe) and PS1(M146L) singly transgenic mice compared to the APP(swe)/PS1(M146L) mice. No differences in size or optical density of p75(NTR)-ir neurons were observed in these three mutants. p75(NTR)-ir fibers in hippocampus and cortex were more pronounced in the APP(swe) and PS1(M146L) mice, while the APP(swe)/PS1(M146L) mice showed the least p75(NTR)-ir fiber staining. These findings suggest a neurotrophic role for mutant APP and PS1 upon cholinergic hippocampal projection neurons at 12 months of age.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app