Add like
Add dislike
Add to saved papers

Practical Evaluation of ChatGPT Performance for Radiology Report Generation.

Academic Radiology 2024 August 13
RATIONALE AND OBJECTIVES: The process of generating radiology reports is often time-consuming and labor-intensive, prone to incompleteness, heterogeneity, and errors. By employing natural language processing (NLP)-based techniques, this study explores the potential for enhancing the efficiency of radiology report generation through the remarkable capabilities of ChatGPT (Generative Pre-training Transformer), a prominent large language model (LLM).

MATERIALS AND METHODS: Using a sample of 1000 records from the Medical Information Mart for Intensive Care (MIMIC) Chest X-ray Database, this investigation employed Claude.ai to extract initial radiological report keywords. ChatGPT then generated radiology reports using a consistent 3-step prompt template outline. Various lexical and sentence similarity techniques were employed to evaluate the correspondence between the AI assistant-generated reports and reference reports authored by medical professionals.

RESULTS: Results showed varying performance among NLP models, with Bart (Bidirectional and Auto-Regressive Transformers) and XLM (Cross-lingual Language Model) displaying high proficiency (mean similarity scores up to 99.3%), closely mirroring physician reports. Conversely, DeBERTa (Decoding-enhanced BERT with disentangled attention) and sequence-matching models scored lower, indicating less alignment with medical language. In the Impression section, the Word-Embedding model excelled with a mean similarity of 84.4%, while others like the Jaccard index showed lower performance.

CONCLUSION: Overall, the study highlights significant variations across NLP models in their ability to generate radiology reports consistent with medical professionals' language. Pairwise comparisons and Kruskal-Wallis tests confirmed these differences, emphasizing the need for careful selection and evaluation of NLP models in radiology report generation. This research underscores the potential of ChatGPT to streamline and improve the radiology reporting process, with implications for enhancing efficiency and accuracy in clinical practice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2025 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app