Journal Article
Review
Add like
Add dislike
Add to saved papers

Multiple hERG channel blocking pathways: implications for macromolecules.

Numerous non-cardiovascular drugs have a potential to induce life-threatening torsades de pointes (TdP) ventricular cardiac arrhythmias by blocking human ether-à-go-go-related gene (hERG) currents via binding to the channel's inner cavity. Identification of the hERG current-inhibiting properties of candidate drugs is performed focusing on binding sites in the channel pore. It has been suggested that biologicals have a low likelihood of hERG current inhibition, since their poor diffusion across the plasma membrane prevents them from reaching the binding site in the channel pore. However, biologicals could influence hERG channel function by binding to 'unconventional' noncanonical binding sites. This Opinion gives an overview on noncanonical blockers of hERG channels that might be of relevance for the assessment of the possible torsadogenic potential of macromolecular therapeutics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2025 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app