Add like
Add dislike
Add to saved papers

Obeticholic Acid Inhibit Mitochondria Dysfunction Via Regulating ERK1/2-DRP Pathway to Exert Protective Effect on Lipopolysaccharide-Induced Myocardial Injury.

Advanced biology. 2024 May 11
Farnesoid X receptor (FXR) plays critical regulatory roles in cardiovascular physiology/pathology. However, the role of FXR agonist obeticholic acid (OCA) in sepsis-associated myocardial injury and underlying mechanisms remain unclear. C57BL/6J mice are treated with OCA before lipopolysaccharide (LPS) administration. The histopathology of the heart and assessment of FXR expression and mitochondria function are performed. To explore the underlying mechanisms, H9c2 cells, and primary cardiomyocytes are pre-treated with OCA before LPS treatment, and extracellular signal-regulated protein kinase (ERK) inhibitor PD98059 is used. LPS-induced myocardial injury in mice is significantly improved by OCA pretreatment. Mechanistically, OCA pretreatment decreased reactive oxygen species (ROS) levels and blocked the loss of mitochondrial membrane potential (ΔΨm) in cardiomyocytes. The expression of glutathione peroxidase 1 (GPX1), superoxide dismutase 1 (SOD1), superoxide dismutase 2 (SOD2), and nuclear factor erythroid 2-related factor 2 (NRF-2) increased in the case of OCA pretreatment. In addition, OCA improved mitochondria respiratory chain with increasing Complex I expression and decreasing cytochrome C (Cyt-C) diffusion. Moreover, OCA pretreatment inhibited LPS-induced mitochondria dysfunction via suppressing ERK1/2-DRP signaling pathway. FXR agonist OCA inhibits LPS-induced mitochondria dysfunction via suppressing ERK1/2-DRP signaling pathway to protect mice against LPS-induced myocardial injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app