Add like
Add dislike
Add to saved papers

Boosted photocatalytic hydrogen evolution of S-scheme N-doped CeO 2-δ @ZnIn 2 S 4 heterostructure photocatalyst.

The advancement of highly effective heterojunction photocatalysts with improved charge separation and transfer has become a crucial scientific perspective for utilizing solar energy. In this study, we developed the S-scheme heterostructure by depositing N-doped CeO2-δ (NC) nanoparticles onto two-dimensional ZnIn2 S4 (ZIS) nanosheets via hydrolysis strategy for significantly enhanced photocatalytic hydrogen evolution reaction. The optimal H2 generation rate of ∼ 798 μmol g-1 h-1 was achieved for NC-3@ZIS under solar light irradiation, which is about 18 and 2 times higher than those of pristine CeO2 (∼44 μmol g-1 h-1 ) and ZIS (∼358 μmol g-1 h-1 ), respectively. The photogenerated electrons from NC interact with the photogenerated holes of ZIS driven by an internal electric field, confirmed by In-situ KPFM, DFT calculation, and XPS results. According to EPR and photoelectrochemical measurements, NC-3@ZIS composite shows dramatically high separation efficiency of photogenerated charge carriers. This study provides a new approach for developing non-noble metal S-scheme heterojunctions with enhanced photocatalytic hydrogen evolution.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app