Add like
Add dislike
Add to saved papers

Inflammation indexes and machine-learning algorithm in predicting urethroplasty success.

PURPOSE: To assess the predictive capability of hematological inflammatory markers for urethral stricture recurrence after primary urethroplasty and to compare traditional statistical methods with a machine-learning-based artificial intelligence algorithm.

MATERIALS AND METHODS: Two hundred eighty-seven patients who underwent primary urethroplasty were scanned. Ages, smoking status, comorbidities, hematological inflammatory parameters (neutrophil-lymphocyte ratios, platelet-lymphocyte ratios [PLR], systemic immune-inflammation indexes [SII], and pan-immune-inflammation values [PIV]), stricture characteristics, history of previous direct-visual internal urethrotomy, urethroplasty techniques, and grafts/flaps placements were collected. Patients were followed up for one year for recurrence and grouped accordingly. Univariate and multivariate logistic regression analyses were conducted to create a predictive model. Additionally, a machine-learning-based logistic regression analysis was implemented to compare predictive performances. p<0.05 was considered statistically significant.

RESULTS: Comparative analysis between the groups revealed statistically significant differences in stricture length (p=0.003), localization (p=0.027), lymphocyte counts (p=0.008), PLR (p=0.003), SII (p=0.003), and PIV (p=0.001). In multivariate analysis, stricture length (odds ratio [OR] 1.230, 95% confidence interval [CI] 1.142-1.539, p<0.0001) and PIV (OR 1.002, 95% CI 1.000-1.003, p=0.039) were identified as significant predictors of recurrence. Classical logistic regression model exhibited a sensitivity of 0.76, specificity of 0.43 with an area under curve (AUC) of 0.65. However, the machine-learning algorithm outperformed traditional methods achieving a sensitivity of 0.80, specificity of 0.76 with a higher AUC of 0.82.

CONCLUSIONS: PIV and machine-learning algorithms shows promise on predicting urethroplasty outcomes, potentially leading to develop possible nomograms. Evolving machine-learning algorithms will contribute to more personalized and accurate approaches in managing urethral stricture.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app