Add like
Add dislike
Add to saved papers

Sinefungin analogs targeting VP39 methyltransferase as potential anti-monkeypox therapeutics: a multi-step computational approach.

The increasing spread of the Monkeypox virus (MPXV) presents a significant public health challenge, emphasising the urgent requirement for effective treatments. Our study focuses on the VP39 Methyltransferase enzyme of MPXV as a critical target for therapy. By utilising virtual screening, we investigated natural compounds with structural similarities to sinefungin, a broad-acting MTase inhibitor. From an initial set of 177 compounds, we identified three promising compounds-CNP0346326, CNP0343532, and CNP008361, whose binding scores were notably close to that of sinefungin. These candidates bonded strongly to the VP39 enzyme, hinting at a notable potential to impede the virus. Our rigorous computational assays, including re-docking, extended molecular dynamics simulations, and energetics analyses, validate the robustness of these interactions. The data paint a promising picture of these natural compounds as front-runners in the ongoing race to develop MPXV therapeutics and set the stage for subsequent empirical trials to refine these discoveries into actionable medical interventions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app