Add like
Add dislike
Add to saved papers

Enhancing high-density microalgae cultivation via exogenous supplementation of biostimulant derived from onion peel waste for sustainable biodiesel production.

Microalgae demonstrate significant potential as a source of liquid-based biofuels. However, increasing biomass productivity in existing cultivation systems is a critical prerequisite for their successful integration into large-scale operations. Thus, the current work aimed to accelerate the growth of C. vulgaris via exogenous supplementation of biostimulant derived from onion peel waste. Under the optimal growth conditions, which entailed a biostimulant dosage of 37.5% v/v, a pH of 3, an air flow rate of 0.4 L/min, and a 2% v/v inoculum harvested during the mid-log phase, yielded a maximum biomass concentration of 1.865 g/L. Under the arbitrarily optimized parameters, a comparable growth pattern was evident in the upscaled cultivation of C. vulgaris, underscoring the potential commercial viability of the biostimulant. The biostimulant, characterized through gas chromatography-mass spectrometry (GC-MS) analysis, revealed a composition rich in polyphenolic and organo-sulphur compounds, notably including allyl trisulfide (28.13%), methyl allyl trisulfide (23.04%), and allyl disulfide (20.78%), showcasing potent antioxidant properties. Additionally, microalgae treated with the biostimulant consistently retained their lipid content at 18.44% without any significant reduction. Furthermore, a significant rise in saturated fatty acid (SFA) content was observed, with C16:0 and C18:1 dominating both bench-scale (44.08% and 14.01%) and upscaled (51.12% and 13.07%) microalgae cultures, in contrast to the control group where C18:2 was prevalent. Consequently, SFA contents reached 54.35% and 65.43% in bench-scale and upscaled samples respectively, compared to 33.73% in the control culture. These compositional characteristics align well with the requirements for producing high-quality crude biodiesel.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app