Add like
Add dislike
Add to saved papers

Cobalt(II)-Catalyzed Synthesis of γ-Diketones from Aryl Alkenes and Its Utilization in the Synthesis of Various Heterocyclic Compounds.

An earth-abundant Co(II) salt-catalyzed mild and affordable synthetic route has been developed for the synthesis of industrially relevant 1,4-dicarbonyl compounds (or γ-diketones) via oxidative coupling between aryl alkenes and ketones (both cyclic and acyclic) using TBHP and DBU as the oxidant and base, respectively. 1,4-Dicarbonyl compounds are known to be synthesized using expensive metal catalysts, dual catalysts, or low-cost metal complexes combined with an additive or ligand template, which further needs to be synthesized. Herein, we report the synthesis of 1,4-dicarbonyl compounds using cobalt(II) acetate as a catalyst without any expensive co-catalyst or ligand templates. This methodology has a broad substrate scope with significant yields and good functional group tolerance. Generation of unsymmetrical 1,4-dicarbonyls at room temperature and its versatile synthetic expansion to produce synthetically and biologically valuable heterocyclic compounds are salient features of this novel methodology. In addition, various controlled experiments such as primary kinetic isotope effect study, Hammett analysis with variation of the nature of the substituents on the styrene ring, and theoretical calculations (density functional theory) unravel the mechanistic intricacies involved in this new, simple, and atom-economic methodology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app