Add like
Add dislike
Add to saved papers

Spiking neural networks for nonlinear regression.

Spiking neural networks (SNN), also often referred to as the third generation of neural networks, carry the potential for a massive reduction in memory and energy consumption over traditional, second-generation neural networks. Inspired by the undisputed efficiency of the human brain, they introduce temporal and neuronal sparsity, which can be exploited by next-generation neuromorphic hardware. Energy efficiency plays a crucial role in many engineering applications, for instance, in structural health monitoring. Machine learning in engineering contexts, especially in data-driven mechanics, focuses on regression. While regression with SNN has already been discussed in a variety of publications, in this contribution, we provide a novel formulation for its accuracy and energy efficiency. In particular, a network topology for decoding binary spike trains to real numbers is introduced, using the membrane potential of spiking neurons. Several different spiking neural architectures, ranging from simple spiking feed-forward to complex spiking long short-term memory neural networks, are derived. Since the proposed architectures do not contain any dense layers, they exploit the full potential of SNN in terms of energy efficiency. At the same time, the accuracy of the proposed SNN architectures is demonstrated by numerical examples, namely different material models. Linear and nonlinear, as well as history-dependent material models, are examined. While this contribution focuses on mechanical examples, the interested reader may regress any custom function by adapting the published source code.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app