Add like
Add dislike
Add to saved papers

Identification of a pyroptosis-immune-related lncRNA signature for prognostic and immune landscape prediction in bladder cancer patients.

PURPOSE: Individualized medicine has become increasingly important in bladder cancer treatment, whereas useful biomarkers for prognostic prediction are still lacking. The current study, therefore, constructed a novel risk model based on pyroptosis- and immune-related long noncoding RNAs (Pyro-Imm lncRNAs) to evaluate the potential prognosis of bladder cancer.

METHODS: Corresponding data of bladder cancer patients were downloaded from the Cancer Genome Atlas (TCGA) database. The univariate Cox regression analysis, least absolute shrinkage and selection operator (LASSO) regression analysis, and multivariate Cox regression analysis were employed to establish a predictive signature, which was evaluated by receiver operator characteristic (ROC) analysis and Kaplan-Meier analysis. Furthermore, the immune infiltration, immune checkpoints, and responses to chemotherapeutic drugs were analyzed with this model.

RESULTS: Three Pyro-Imm lncRNAs (MAFG-DT, AC024060.1, AC116914.2) were finally identified. Patients in the low-risk group demonstrated a significant survival advantage. The area under the ROC curve (AUC) at 1, 3, and 5 years was 0.694, 0.709, and 0.736 respectively in the entire cohort. KEGG and GO analyses showed that the Wnt pathway plays a crucial role in the high-risk group. The risk score was significantly related to the degree of infiltration of different immune cells, the expression of multiple immune checkpoint genes, and the sensitivity of various chemotherapeutic drugs.

CONCLUSION: This novel signature provides a theoretical basis for cancer immunology and chemotherapy, which might help develop individualized therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app