Add like
Add dislike
Add to saved papers

Transcranial direct current stimulation alters cerebrospinal fluid-interstitial fluid exchange in mouse brain.

Brain Stimulation 2024 April 29
BACKGROUND: Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that has gained prominence recently. Clinical studies have explored tDCS as an adjunct to neurologic disease rehabilitation, with evidence suggesting its potential in modulating brain clearance mechanisms. The glymphatic system, a proposed brain waste clearance system, posits that cerebrospinal fluid-interstitial fluid (CSF-ISF) exchange aids in efficient metabolic waste removal. While some studies have linked tDCS to astrocytes inositol trisphosphate (IP3 )/Ca2+ signaling, the impact of tDCS on CSF-ISF exchange dynamics remains unclear.

HYPOTHESIS: tDCS influences the dynamics of CSF-ISF exchange through astrocytic IP3 /Ca2+ signaling.

METHODS: In this study, we administered tDCS (0.1mA for 10 minutes) to C57BL/6 mice anesthetized with ketamine-xylazine (KX). The anode was positioned on the cranial bone above the cortex, and the cathode was inserted into the neck. Following tDCS, we directly assessed brain fluid dynamics by injecting biotinylated dextran amine (BDA) as a CSF tracer into the cisterna magna (CM). The brain was then extracted after either 30 or 60 minutes and fixed. After 24 hours, the sectioned brain slices were stained with Alexa 594-conjugated streptavidin (SA) to visualize BDA using immunohistochemistry. We conducted Electroencephalography (EEG) recordings and aquaporin 4 (AQP4)/CD31 immunostaining to investigate the underlying mechanisms of tDCS. Additionally, we monitored the efflux of Evans blue, injected into the cisterna magna, using cervical lymph node imaging. The experiments were subsequently repeated with inositol trisphosphate receptor type 2 (IP3 R2)-knockout mice.

RESULTS: Post-tDCS, we observed an increased CSF tracer influx, indicating a modulation of CSF-ISF exchange by tDCS. Additionally, tDCS appeared to enhance the brain's metabolic waste efflux. EEG recordings showed an increase in delta wave post-tDCS. But no significant change in AQP4 expression was detected 30 minutes post-tDCS.

CONCLUSION: Our findings suggest that tDCS augments the glymphatic system's influx and efflux. Through astrocyte IP3 /Ca2+ signaling, tDCS was found to modify the delta wave, which correlates positively with brain clearance. This study underscores the potential of tDCS in modulating brain metabolic waste clearance.

Full text links

We have located open access text paper links.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app