Add like
Add dislike
Add to saved papers

Artificial Intelligence to Differentiate Pediatric Pseudopapilledema and True Papilledema on Fundus Photographs.

PURPOSE: To develop and test an artificial intelligence (AI) model to aid in differentiating pediatric pseudopapilledema from true papilledema on fundus photographs.

DESIGN: Multicenter retrospective study.

SUBJECTS: A total of 851 fundus photographs from 235 children (age < 18 years) with pseudopapilledema and true papilledema.

METHODS: Four pediatric neuro-ophthalmologists at 4 different institutions contributed fundus photographs of children with confirmed diagnoses of papilledema or pseudopapilledema. An AI model to classify fundus photographs as papilledema or pseudopapilledema was developed using a DenseNet backbone and a tribranch convolutional neural network. We performed 10-fold cross-validation and separately analyzed an external test set. The AI model's performance was compared with 2 masked human expert pediatric neuro-ophthalmologists, who performed the same classification task.

MAIN OUTCOME MEASURES: Accuracy, sensitivity, and specificity of the AI model compared with human experts.

RESULTS: The area under receiver operating curve of the AI model was 0.77 for the cross-validation set and 0.81 for the external test set. The accuracy of the AI model was 70.0% for the cross-validation set and 73.9% for the external test set. The sensitivity of the AI model was 73.4% for the cross-validation set and 90.4% for the external test set. The AI model's accuracy was significantly higher than human experts on the cross validation set ( P  < 0.002), and the model's sensitivity was significantly higher on the external test set ( P  = 0.0002). The specificity of the AI model and human experts was similar (56.4%-67.3%). Moreover, the AI model was significantly more sensitive at detecting mild papilledema than human experts, whereas AI and humans performed similarly on photographs of moderate-to-severe papilledema. On review of the external test set, only 1 child (with nearly resolved pseudotumor cerebri) had both eyes with papilledema incorrectly classified as pseudopapilledema.

CONCLUSIONS: When classifying fundus photographs of pediatric papilledema and pseudopapilledema, our AI model achieved > 90% sensitivity at detecting papilledema, superior to human experts. Due to the high sensitivity and low false negative rate, AI may be useful to triage children with suspected papilledema requiring work-up to evaluate for serious underlying neurologic conditions.

FINANCIAL DISCLOSURES: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app