Add like
Add dislike
Add to saved papers

Dynamic Model Validation and Simulation of Acetone-Toluene and Benzene-Toluene Systems for Industrial Volatile Organic Compound (VOC) Abatement.

Environmental impact mitigation is one of the grand challenges for industries globally. Volatile organic compounds (VOCs) are solvents whose emissions are potentially toxic to human health and ecosystems yet indispensable for the manufacturing of life-saving medicine. Adsorption with activated carbon columns is an established countermeasure for end-of-pipe emission control, whose efficiency, however, is impeded by irregular bed saturation due to the complex nature of its inputs. This work presents the application of a validated nonisothermal adsorption model to examine multicomponent trace mixtures of acetone-toluene and benzene-toluene on activated carbon. Our results indicate preferential adsorption of toluene over both acetone and benzene for all concentrations examined, which is in agreement with experimental data. Moreover, moderate temperature variations and pressure drops are revealed. Finally, Glueckauf's hodograph theory is employed for maximum outlet concentration prediction and compared with simulation results and experimental data, thus providing valuable insights into nonisothermal VOC abatement, which paves the way for industrial operation optimization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app