We have located links that may give you full text access.
Journal Article
Research Support, Non-U.S. Gov't
Use of quantitative bias analysis to evaluate single-arm trials with real-world data external controls.
Pharmacoepidemiology and Drug Safety 2024 May
PURPOSE: Use of real-world data (RWD) for external controls added to single-arm trials (SAT) is increasingly prevalent in regulatory submissions. Due to inherent differences in the data-generating mechanisms, biases can arise. This paper aims to illustrate how to use quantitative bias analysis (QBA).
METHODS: Advanced non-small cell lung cancer (NSCLC) serves as an example, where many small subsets of patients with molecular tumor subtypes exist. First, some sources of bias that may occur in oncology when comparing RWD to SAT are described. Second, using a hypothetical immunotherapy agent, a dataset is simulated based on expert input for survival analysis of advanced NSCLC. Finally, we illustrate the impact of three biases: missing confounder, misclassification of exposure, and outcome evaluation.
RESULTS: For each simulated scenario, bias was induced by removing or adding data; hazard ratios (HRs) were estimated applying conventional analyses. Estimating the bias-adjusted treatment effect and uncertainty required carefully selecting the bias model and bias factors. Although the magnitude of each biased and bias-adjusted HR appeared moderate in all three hypothetical scenarios, the direction of bias was variable.
CONCLUSION: These findings suggest that QBA can provide an intuitive framework for bias analysis, providing a key means of challenging assumptions about the evidence. However, the accuracy of bias analysis is itself dependent on correct specification of the bias model and bias factors. Ultimately, study design should reduce bias, but QBA allows us to evaluate the impact of unavoidable bias to assess the quality of the evidence.
METHODS: Advanced non-small cell lung cancer (NSCLC) serves as an example, where many small subsets of patients with molecular tumor subtypes exist. First, some sources of bias that may occur in oncology when comparing RWD to SAT are described. Second, using a hypothetical immunotherapy agent, a dataset is simulated based on expert input for survival analysis of advanced NSCLC. Finally, we illustrate the impact of three biases: missing confounder, misclassification of exposure, and outcome evaluation.
RESULTS: For each simulated scenario, bias was induced by removing or adding data; hazard ratios (HRs) were estimated applying conventional analyses. Estimating the bias-adjusted treatment effect and uncertainty required carefully selecting the bias model and bias factors. Although the magnitude of each biased and bias-adjusted HR appeared moderate in all three hypothetical scenarios, the direction of bias was variable.
CONCLUSION: These findings suggest that QBA can provide an intuitive framework for bias analysis, providing a key means of challenging assumptions about the evidence. However, the accuracy of bias analysis is itself dependent on correct specification of the bias model and bias factors. Ultimately, study design should reduce bias, but QBA allows us to evaluate the impact of unavoidable bias to assess the quality of the evidence.
Full text links
Related Resources
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2025 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app