Add like
Add dislike
Add to saved papers

Simultaneous determination of methadone and tramadol in serum samples by ultrasonic-assisted micro solid phase extraction and gas chromatography-mass spectrometry.

Ultrasonic-assisted dispersive micro solid phase extraction (UA-DMSPE) is proposed as a fast and easy technique for the extraction and preconcentration of methadone and tramadol from serum samples. Different sorbents including carbon nanotubes, oxidized carbon nanotubes, and TiO2 nanoparticles were compared to extract methadone and tramadol. The best performance was obtained using oxidized carbon nanotubes due to the strong affinity between the drugs and carbon nanotube adsorbents. Final analysis of drugs performed by using gas chromatography-mass spectrometric detection. Different parameters affecting the extraction efficiency, such as the sample volume, amount of adsorbent, desorption solvent type and volume, centrifugation time, and speed were investigated and optimized. The striking features of this technique are correlated to its speed and the small volumes of sample (about 1 mL), desorption solvent (about 50 μL), and adsorbent (about 0.001 g) for analysis of drugs, and finally, milder centrifugation conditions relative to the previously reported adsorbent. The optimal parameters were achieved as follows: pH value was set at 9, the sample volume was adjusted to 1200 µL, the amount of adsorbent used was 1 mg, the extraction time was set at 5 min, and the volume of the desorption solvent was adjusted to 50 µL. The limits of detections (0.5 and 0.8 ng mL-1 ) and quantifications (1.5 and 2.5 ng mL-1 ) were obtained for methadone and tramadol, respectively. The developed method also showed good repeatability, relative standard deviation (RSD) of 9.49 % and 7.47 % (n = 5), for the spiked aqueous solution at the concentration level of 10, 50, and 100 ng mL-1 for analytes, and linearity, R ≥ 0.9809. The results showed that UA-DMSPE is a quick, relatively inexpensive, and environmentally friendly alternative technique for the extraction of opiate drugs from serum samples.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app