Add like
Add dislike
Add to saved papers

Process optimization for microfluidic preparation of liposomes using food-grade components.

Food Chemistry 2024 April 25
This study explores the potential for optimizing a sustainable manufacturing process that maintains the essential characteristics of conventional liposomes using food-grade solvents and components. The focus was comparing the physicochemical, morphological, and interfacial properties of liposomes produced with these food-grade ingredients to those made by conventional methods. It was found that there was no significant difference in particle size (195.87 ± 1.40 nm) and ζ-potential (-45.13 ± 0.65 mV) between liposomes made from food-grade and conventional materials. The manufacturing process for liposomes, utilizing food-grade solvents and components, was optimized through the application of Plackett-Burman design and response surface methodology. This approach helped identify key parameters (soy lecithin, β-sitosterol, W/O ratio) and their optimal values (3.17 g, 0.25 g, 1:2.59). These findings suggest that it is possible to enhance the use of liposomes as an effective and safe delivery system in the food industry, adhering to the strict guidelines set by regulatory agencies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app