Add like
Add dislike
Add to saved papers

Modeling of the Effect of Subperiosteal Hydrostatic Pressure Conductivity between Joints on Decreasing Contact Loads on Cartilage and of the Effect of Myofascial Relief in Treating Trigger Points: The Floating Skeleton Theory.

Biomimetics 2024 April 9
Chronic overloading of the cartilage can lead to its irreversible destruction, as observed in people with osteoarthritis. The floating skeleton model previously introduced postulates that overloading begins and progresses when a joint is isolated from the hydrostatical connection with other joints. Such a connection occurs via the interstitial fluid in subperiosteal space and allows for pressure transmission between synovial capsules modulating intra-articular pressure. In the current study, a simple experiment was performed to model an obstruction in the subperiosteal hydrostatic pressure conductivity between joints to illustrate the effect of that obstruction on loads borne by the joint. When the obstruction was removed, the load experienced by the joint was reduced as it was redistributed throughout the model structure. The experiment demonstrated that contact pressures can be redistributed when the conditions of Pascal's Law are met.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app