Add like
Add dislike
Add to saved papers

Reinforcement Learning with Task Decomposition and Task-Specific Reward System for Automation of High-Level Tasks.

Biomimetics 2024 March 27
This paper introduces a reinforcement learning method that leverages task decomposition and a task-specific reward system to address complex high-level tasks, such as door opening, block stacking, and nut assembly. These tasks are decomposed into various subtasks, with the grasping and putting tasks executed through single joint and gripper actions, while other tasks are trained using the SAC algorithm alongside the task-specific reward system. The task-specific reward system aims to increase the learning speed, enhance the success rate, and enable more efficient task execution. The experimental results demonstrate the efficacy of the proposed method, achieving success rates of 99.9% for door opening, 95.25% for block stacking, 80.8% for square-nut assembly, and 90.9% for round-nut assembly. Overall, this method presents a promising solution to address the challenges associated with complex tasks, offering improvements over the traditional end-to-end approach.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app