Add like
Add dislike
Add to saved papers

Root and rhizosphere contribution to the net soil COS exchange.

BACKGROUND AND AIMS: Partitioning the measured net ecosystem carbon dioxide (CO2 ) exchange into gross primary productivity (GPP) and ecosystem respiration remains a challenge, which scientists try to tackle by using the properties of the trace gas carbonyl sulfide (COS). Its similar pathway into and within the leaf makes it a potential photosynthesis proxy. The application of COS as an effective proxy depends, among other things, on a robust inventory of potential COS sinks and sources within ecosystems. While the soil received some attention during the last couple of years, the role of plant roots is mostly unknown. In our study, we investigated the effects of live roots on the soil COS exchange.

METHODS: An experimental setup was devised to measure the soil and the belowground plant parts of young beech trees observed over the course of 9 months.

RESULTS: During the growing season, COS emissions were significantly lower when roots were present compared to chambers only containing soil, while prior to the growing season, with photosynthetically inactive trees, the presence of roots increased COS emissions. The difference in the COS flux between root-influenced and uninfluenced soil was fairly constant within each month, with diurnal variations in the COS flux driven primarily by soil temperature changes rather than the presence or absence of roots.

CONCLUSION: While the mechanisms by which roots influence the COS exchange are largely unknown, their contribution to the overall ground surface COS exchange should not be neglected when quantifying the soil COS exchange.

SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11104-023-06438-0.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app