Add like
Add dislike
Add to saved papers

Environmental Impact Prediction of a New Tire Vulcanization Activator.

Zinc oxide (ZnO) is the most common curing activator used to manufacture tires. To minimize environmental impacts by decreasing the zinc content and rolling resistance of tires, ZnO nanoparticles (NPs) anchored on SiO2 NPs (ZnO@SiO2 ) are currently under development as new activators at the pilot scale. Here, we applied prospective life cycle assessment to predict the impacts on human health, ecosystem quality, and resource scarcity of synthesizing ZnO@SiO2 for the production of passenger car tires at an industrial scale. We found that the life cycle impacts of the synthesis are expected to decrease by 89 to 96% between the pilot and industrial scale. The largest contributors to the synthesis of ZnO@SiO2 were electricity consumption and waste treatment of the solvent. Using the new activator for tire production led to potential reductions of 9 to 12% in life cycle impacts compared to tires that are currently in use. Those reductions were due to the expected decrease in rolling resistance, leading to lower fuel consumption, which outweighed the additional environmental impacts of the synthesis, as well as the potential decrease in lifetime. Our work highlights an opportunity for manufacturers to mitigate their impacts over the full life cycle of the tire.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app