Add like
Add dislike
Add to saved papers

Demagnetizing Ferromagnetic Catalysts to the Sabatier Optimal of Haber-Bosch Process.

JACS Au. 2024 April 23
Achieving the Sabatier optimal of a chemical reaction has been the central topic in heterogeneous catalysis for a century. However, this ultimate goal was greatly hindered in previous catalyst design strategies since the active sites indeed changed. Fortunately, the magneto-catalytic effect (MCE) provides a promising solution to this long-standing challenge. Recent research suggests that the performance of ferromagnetic catalysts is capable to be promoted without changing its chemical structure. Herein, we use time-dependent density functional perturbation theory (TDDFPT) calculations to elucidate that a partially demagnetized (DM) ferromagnet could be a Sabatier optimal catalyst. Using ammonia synthesis as the model reaction, we determined the activity of Cobalt at each DM state by including the magnetic thermal excitations via magnon analysis, making the 55% DM Co to the genuine Sabatier optimal. As an essential but underexcavated phenomenon in heterogeneous catalysis, the MCE will open a new avenue to design high-performance catalysts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app