Add like
Add dislike
Add to saved papers

A Robust Growth-Based Selection Platform to Evolve an Enzyme via Dependency on Noncanonical Tyrosine Analogues.

JACS Au. 2024 April 23
Growth-based selections evaluate the fitness of individual organisms at a population level. In enzyme engineering, such growth selections allow for the rapid and straightforward identification of highly efficient biocatalysts from extensive libraries. However, selection-based improvement of (synthetically useful) biocatalysts is challenging, as they require highly dependable strategies that artificially link their activities to host survival. Here, we showcase a robust and scalable growth-based selection platform centered around the complementation of noncanonical amino acid-dependent bacteria. Specifically, we demonstrate how serial passaging of populations featuring millions of carbamoylase variants autonomously selects biocatalysts with up to 90,000-fold higher initial rates. Notably, selection of replicate populations enriched diverse biocatalysts, which feature distinct amino acid motifs that drastically boost carbamoylase activity. As beneficial substitutions also originated from unintended copying errors during library preparation or cell division, we anticipate that our growth-based selection platform will be applicable to the continuous, autonomous evolution of diverse biocatalysts in the future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app