Add like
Add dislike
Add to saved papers

Effect of total dissolved gas supersaturation on the passage behavior of silver carp (Hypophthalmichthys molitrix) and ya-fish (Schizothorax prenanti) through an experimental vertical slot fishway.

Total dissolved gas (TDG) supersaturation caused by flood discharge water poses a threat to vital activities such as migration, foraging, and evasion in fish species upstream of the Yangtze River, which may impair the ability of fish to pass through fishways during the migration period, causing poor utilization of fishways. Previous studies have shown that TDG supersaturation reduces the critical and burst swimming abilities of fish, suggesting potential adverse effects on swimming performance. However, studies focusing on the impact of TDG on fish swimming behavior in experimental vertical-slot fishways remain scarce. Therefore, in this study, silver carp (Hypophthalmichthys molitrix) and ya-fish (Schizothorax prenanti) were used as the study species, and comparative passage experiments were carried out in an experimental vertical slot fishway to systematically analyze the effects of TDG supersaturation on their passage behavior. The passage success of the silver carp was 57%, 39%, 26%, and 27% at TDG levels of 100%, 110%, 120%, and 130%, respectively. Passage success of ya-fish was 73%, 37%, 31%, and 35% at TDG concentrations of 100%, 110%, 120%, and 130%, respectively. The passage time for both species increased significantly with increasing TDG levels. Furthermore, the passage routes of silver carp changed significantly compared to the control group, whereas the passage routes of ya-fish changed insignificantly. High levels of TDG supersaturation (≥120%) also contributed to a higher mortality rate of ya-fish passing through the vertical slot fishway. The research results provide valuable data on the influence of TDG supersaturation on fish movement behavior responses in experimental vertical slot fishways, offering a reference for the design of fishways and the formulation of reservoir operation schemes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app